Optimal fractionation in HDR brachytherapy

Gerard Morton
Objectives

- Choose a dose and fractionation to use for HDR boost
- Interpret recent clinical trial results to select dose and fractionation for HDR monotherapy
- Assess ongoing clinical trials of monotherapy
American Brachytherapy Society consensus guidelines for high-dose-rate prostate brachytherapy

Yoshiya Yamada¹,* , Leland Rogers², D. Jeffrey Demanes³, Gerard Morton⁴, Bradley R. Prestidge⁵, Jean Poulit⁶, Gil’ad N. Cohen⁷, Marco Zaider⁷, Mihai Ghilezan⁸, I-Chow Hsu⁶

“Given the heterogeneity of prescription doses described in the literature, all reporting similar excellent outcomes in terms of toxicity and disease control, no particular dose fractionation schedule can be recommended.”
Equivalent dose at 2 Gy/fraction

<table>
<thead>
<tr>
<th>Radiation Schedule</th>
<th>$\alpha/\beta=2$</th>
<th>$\alpha/\beta=3$</th>
<th>$\alpha/\beta=10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Gy x 2 HDR + 45 Gy/25f</td>
<td>102</td>
<td>95</td>
<td>77</td>
</tr>
<tr>
<td>15 Gy x 1 HDR + 37.5 Gy/15f</td>
<td>106</td>
<td>95</td>
<td>62</td>
</tr>
</tbody>
</table>
Sunnybrook HDR Boost Protocols

Intermediate Risk Patients

Single 15 Gy + 37.5 Gy/15 fractions (median FU 6.2 yrs)

10 Gy x 2 + 45 Gy/25 fractions (median FU 8.3 yrs)

Log-rank test: $p = 0.9953$
Single 15 Gy HDR Boost + 37.5 Gy/15 f EBRT

Findings

• Nadir PSA: 0.05 ng/ml
• Positive biopsy rate at 2 years < 1%
• 5-year bDFS: >97%
• Late Grade 3 toxicity 3%

Morton, Radiother Oncol 2011
Helou et al, Radiother Oncol 2015
D’Alimonte et al, Brachytherapy 2015
Shahid et al, Clin Oncol 2017
HDR Monotherapy Dose Fractionations

<table>
<thead>
<tr>
<th>Dose</th>
<th>Fraction</th>
<th>Dose</th>
<th>Fraction</th>
<th>Dose</th>
<th>Fraction</th>
<th>Dose</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Gy</td>
<td>9</td>
<td>6 Gy</td>
<td>8</td>
<td>7 Gy</td>
<td>6</td>
<td>7.25 Gy</td>
<td>6</td>
</tr>
<tr>
<td>6.5 Gy</td>
<td>6</td>
<td>6 Gy</td>
<td>6</td>
<td>6 Gy</td>
<td>6</td>
<td>6 Gy</td>
<td>6</td>
</tr>
<tr>
<td>7 Gy</td>
<td>4</td>
<td>9 Gy</td>
<td>4</td>
<td>9.5 Gy</td>
<td>4</td>
<td>9.5 Gy</td>
<td>4</td>
</tr>
<tr>
<td>10 Gy</td>
<td>3</td>
<td>10.5 Gy</td>
<td>3</td>
<td>11.5 Gy</td>
<td>3</td>
<td>13 Gy</td>
<td>2</td>
</tr>
<tr>
<td>13.5 Gy</td>
<td>2</td>
<td>19 Gy</td>
<td>1</td>
<td>20.5 Gy</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HDR Monotherapy – 4 and more fractions

<table>
<thead>
<tr>
<th>Author</th>
<th>n</th>
<th>Gy x f</th>
<th>Dose (Gy)</th>
<th>Median FU (yrs)</th>
<th>bDFS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LR IR HR</td>
<td></td>
</tr>
<tr>
<td>Yoshioka</td>
<td>190</td>
<td>6 x 8</td>
<td>48</td>
<td>7.6</td>
<td>93%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 x 9</td>
<td>54</td>
<td></td>
<td>81%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.5 x 7</td>
<td>45.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hauswald</td>
<td>448</td>
<td>7-7.25 x 6</td>
<td>42-43.5</td>
<td>6.5</td>
<td>99%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>Rogers</td>
<td>284</td>
<td>6.5 x 6</td>
<td>39</td>
<td>2.7</td>
<td>94%</td>
</tr>
<tr>
<td>Mark</td>
<td>301</td>
<td>7.5 x 6</td>
<td>45</td>
<td>8</td>
<td>88%</td>
</tr>
<tr>
<td>Demanes</td>
<td>157</td>
<td>7 x 6</td>
<td>42</td>
<td>5.2</td>
<td>97%</td>
</tr>
<tr>
<td>Patel</td>
<td>190</td>
<td>7.25 x 6</td>
<td>43.5</td>
<td>6.2</td>
<td>90%</td>
</tr>
<tr>
<td>Martinez</td>
<td>171</td>
<td>9.5 x 4</td>
<td>38</td>
<td>4.6</td>
<td>91%</td>
</tr>
<tr>
<td>Zamboglou</td>
<td>492</td>
<td>9.5 x 4</td>
<td>38</td>
<td>5-7.7</td>
<td>95%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93%</td>
</tr>
</tbody>
</table>
HDR Monotherapy: 2-3 fractions

<table>
<thead>
<tr>
<th>Author</th>
<th>n</th>
<th>Gy x f</th>
<th>Dose (Gy)</th>
<th>Median FU (yrs)</th>
<th>bDFS</th>
<th>LR</th>
<th>IR</th>
<th>HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barkati</td>
<td>19</td>
<td>10 x 3</td>
<td>30</td>
<td>3.3</td>
<td>85%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>10.5 x 3</td>
<td>31.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>11 x 3</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>11.5 x 3</td>
<td>34.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strouthos</td>
<td>450</td>
<td>11.5 x 3</td>
<td>34.5</td>
<td>4.7</td>
<td>96%</td>
<td>96%</td>
<td>92%</td>
<td></td>
</tr>
<tr>
<td>Kulkielka</td>
<td>77</td>
<td>15 x 3</td>
<td>45</td>
<td>4.7</td>
<td>97%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jawad</td>
<td>319</td>
<td>9.5 x 4</td>
<td>38</td>
<td>5.5</td>
<td>98%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>79</td>
<td>12 x 2</td>
<td>24</td>
<td>3.5</td>
<td>92%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>13.5 x 2</td>
<td>27</td>
<td>2.9</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoskin</td>
<td>55</td>
<td>8.5-9 x 4</td>
<td>34-36</td>
<td>5</td>
<td>99%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>109</td>
<td>10.5 x 3</td>
<td>31.5</td>
<td>9</td>
<td>91%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>138</td>
<td>13 x 2</td>
<td>26</td>
<td>5.25</td>
<td>93%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HDR Monotherapy by Risk Group

11.5 Gy x 3

Low Risk (n=198)
Intermediate Risk (n=135)
High Risk (n=117)

Patients at risk
- low risk: 198, 197, 185, 145, 112, 85, 63, 22
- intermediate risk: 135, 134, 119, 102, 88, 68, 51, 19
- high risk: 117, 115, 107, 80, 58, 48, 33, 17

Streuthos, Radiother Oncol 2018
Linear Quadratic Calculations

For alpha/beta = 1.5

<table>
<thead>
<tr>
<th>HDR Dose x Fractions</th>
<th>BED</th>
<th>Equivalent EBRT Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Gy x 9</td>
<td>270</td>
<td>116 Gy</td>
</tr>
<tr>
<td>7.5 Gy x 6</td>
<td>270</td>
<td>116 Gy</td>
</tr>
<tr>
<td>9.5 Gy x 4</td>
<td>278</td>
<td>120 Gy</td>
</tr>
<tr>
<td>11.5 Gy x 3</td>
<td>286</td>
<td>122 Gy</td>
</tr>
<tr>
<td>13.5 Gy x 2</td>
<td>270</td>
<td>116 Gy</td>
</tr>
<tr>
<td>19 Gy x 1</td>
<td>260</td>
<td>112 Gy</td>
</tr>
</tbody>
</table>

BED = nd \(1 + \frac{d}{\alpha/\beta}\)
Linear Quadratic Calculations

For alpha/beta = 1.5

<table>
<thead>
<tr>
<th>HDR Dose x Fractions</th>
<th>BED</th>
<th>Equivalent EBRT Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Gy x 9</td>
<td>270</td>
<td>116 Gy</td>
</tr>
<tr>
<td>7.5 Gy x 6</td>
<td>270</td>
<td>116 Gy</td>
</tr>
<tr>
<td>9.5 Gy x 4</td>
<td>278</td>
<td>120 Gy</td>
</tr>
<tr>
<td>11.5 Gy x 3</td>
<td>286</td>
<td>122 Gy</td>
</tr>
<tr>
<td>13.5 Gy x 2</td>
<td>270</td>
<td>116 Gy</td>
</tr>
<tr>
<td>19 Gy x 1</td>
<td>260</td>
<td>112 Gy</td>
</tr>
</tbody>
</table>

\[\text{BED} = nd \left(1 + \frac{d}{\alpha/\beta}\right) + C + D \]

C = Caution
D = Doubt
Single-dose high-dose-rate brachytherapy compared to two and three fractions for locally advanced prostate cancer

Peter Hoskin, Ana Rojas *, Peter Ostler, Robert Hughes, Roberto Alonzi, Gerry Lowe

19 Gy (n=23)
20 Gy (n=26)
Median FU 49 mos
Interm/High Risk: 28/21
74% had ADT

4 yr bDFS: 94%
High-dose-rate interstitial brachytherapy as monotherapy in one fraction for the treatment of favorable stage prostate cancer: Toxicity and long-term biochemical results

Pedro J. Prada a,*, Juan Cardenal a, Ana García Blanco a, Javier Anchuelo a, María Ferri a, Gema Fernández c, Elisabeth Arrojo c, Andrés Vázquez b, Maite Pacheco b, José Fernández d

19 Gy x 1
N=60
Low/Interm: 44/16
1/3 had ADT
Median FU 6 yrs

66% bDFS

Radiother Oncol 2016
Five-Year Outcomes of a Single-Institution Prospective Trial of 19-Gy Single-Fraction High-Dose-Rate Brachytherapy for Low- and Intermediate-Risk Prostate Cancer

68 patients med FU 3.9 yrs 5 yr bDFS: 77%

Int J Radiat Oncol Biol Phys 2019
Sunnybrook Randomized Trial

Ca Prostate
- T1c/T2a, G6 or 7,
- PSA <20
- Volume < 60 cc
- IPSS < 19
- No ADT or TURP

19 Gy x 1

13.5 Gy x 2
1 week apart

Follow-up
- CTCAE v4
- EPIC
- IPSS
- Clinical PSA

170 patients accrued June 2013 to April 2015
Patient Characteristics

<table>
<thead>
<tr>
<th></th>
<th>19 Gy x 1 (n=87)</th>
<th>13.5 Gy x 2 (n=83)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Age (range)</td>
<td>65 (46,80)</td>
<td>65 (49,80)</td>
</tr>
<tr>
<td>Stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1c</td>
<td>67</td>
<td>63</td>
</tr>
<tr>
<td>T2a</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Median PSA (range)</td>
<td>6.4 (1.1,13.7)</td>
<td>6.3 (2.0,16.0)</td>
</tr>
<tr>
<td>Gleason Score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gleason 6</td>
<td>28 (32%)</td>
<td>19 (23%)</td>
</tr>
<tr>
<td>Gleason 7</td>
<td>59 (68%)</td>
<td>64 (77%)</td>
</tr>
<tr>
<td>Risk Grouping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>21 (24%)</td>
<td>12 (14%)</td>
</tr>
<tr>
<td>Fav Intermediate</td>
<td>40 (46%)</td>
<td>46 (56%)</td>
</tr>
<tr>
<td>Unfav Intermediate</td>
<td>26 (30%)</td>
<td>25 (30%)</td>
</tr>
</tbody>
</table>

Median Follow-up 51 months
Dosimetry Data

<table>
<thead>
<tr>
<th></th>
<th>19 Gy x 1</th>
<th>13.5 Gy x 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>#1</td>
<td>#2</td>
</tr>
<tr>
<td>Mean PTV cc</td>
<td>46.9 (14.2)</td>
<td>44.6 (11.4)</td>
<td>51 (13.8)</td>
</tr>
<tr>
<td>Mean V100</td>
<td>97.2 (1.7)</td>
<td>96.9 (1.5)</td>
<td>97.3 (1.2)</td>
</tr>
<tr>
<td>Mean V150</td>
<td>36.0 (4.8)</td>
<td>34.5 (5.3)</td>
<td>35.6 (6.1)</td>
</tr>
<tr>
<td>Mean V200</td>
<td>11.4 (3.3)</td>
<td>11.4 (3.9)</td>
<td>11.2 (3.3)</td>
</tr>
<tr>
<td>D 90 %</td>
<td>110.6 (3.1)</td>
<td>109.6 (2.9)</td>
<td>110.0 (2.5)</td>
</tr>
<tr>
<td>Urethra D max %</td>
<td>122.9 (2.6)</td>
<td>122.4 (8.3)</td>
<td>121.1 (7.1)</td>
</tr>
<tr>
<td>Urethra D10 %</td>
<td>116.4 (1.1)</td>
<td>116.2 (1.2)</td>
<td>116.2 (1.1)</td>
</tr>
<tr>
<td>Rectal D max %</td>
<td>84.5 (9.9)</td>
<td>81.0 (10.6)</td>
<td>81.6 (13.1)</td>
</tr>
<tr>
<td>Rectal V 80 (cc)</td>
<td>0.17 (0.2)</td>
<td>0.11 (0.18)</td>
<td>0.08 (0.16)</td>
</tr>
</tbody>
</table>
Acute Toxicity

- Minimal acute toxicity in either arm
- Acute retention rate 2%
- 1 acute Grade 3 toxicity (haematuria)

Radiother Oncol 122: 87-92, 2017
Urinary Symptoms: HDR vs. LDR

MEDIAN IPSS OVER TIME

MONTHS SINCE IMPLANT

MEDIAN IPSS

0 2 4 6 8 10 12 14 16 18

0 6 12 18 24 30

HDR LDR

Radiation Oncology
UNIVERSITY OF TORONTO
Sunnybrook
HEALTH SCIENCES CENTRE
PSA Response by treatment arm

More rapid PSA response in 2x fraction arm
Nadir PSA > twice as high

Median PSA (95% CI) Value (ng/mL)
19gy1f 27gy2f
Baseline W6 M3 M6 M9 M12 M18 M24 M30 M36 M42 M48 M54 M60

Median PSA (95% CI) Value (ng/mL)

0.75 0.21
Conclusions from Sunnybrook Trial

• 13.5 Gy x 2 is the clear winner
• Treatment with either 1 or 2 fractions is very well tolerated
• Toxicity from single fraction slightly less in first 12 months but slightly worse beyond 3 years

• 13.5 Gy x 2 is highly effective, looks similar to LDR
• 19 Gy x 1 has unacceptable local failure rate, usually at site of initial disease
So what should we do?

- Stick to 2 fractions
- Increase single fraction dose to whole gland
- Use dose painting to increase dose to dominant lesion
- Something else
Higher Whole Gland Dose

High-dose-rate interstitial brachytherapy as monotherapy in one fraction of 20.5 Gy for the treatment of localized prostate cancer: Toxicity and 6-year biochemical results

Pedro J. Prada1,6, María Ferri1, Juan Cardenal1, Ana García Blanco1, Javier Anchuelo1, Iván Díaz de Cerio1, Andrés Vázquez2, Maite Pacheco2, Ignacio Raba2, Samuel Ruiz2

63% Gleason 6
37% Gleason 7
68% PSA < 10
43% ADT

bDFS
Low Risk: 82%
Int Risk: 79%

G6: 87%
G7: 62%

N=60
Median FU 51 mos
Higher Whole Gland Dose?

Prostate

High-dose-rate interstitial brachytherapy as monotherapy in one fraction of 20.5 Gy for the treatment of localized prostate cancer: Toxicity and 6-year biochemical results

Pedro J. Prada¹,², María Ferri¹, Juan Cardenal¹, Ana García Blanco¹, Javier Anchuelo¹, Iván Díaz de Cerio¹, Andrés Vázquez², Maite Pacheco², Ignacio Raba², Samuel Ruiz²

<table>
<thead>
<tr>
<th>Variable</th>
<th>V₀ (%)</th>
<th>V₁₅ (%)</th>
<th>V₂₀ (%)</th>
<th>D₀ (%)</th>
<th>V₁₀₀ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>97</td>
<td>17</td>
<td>4</td>
<td>21</td>
<td>91</td>
</tr>
<tr>
<td>Median</td>
<td>98</td>
<td>18</td>
<td>5</td>
<td>22</td>
<td>92</td>
</tr>
<tr>
<td>Minimum</td>
<td>96</td>
<td>11</td>
<td>2</td>
<td>19</td>
<td>81</td>
</tr>
<tr>
<td>Maximum</td>
<td>100</td>
<td>23</td>
<td>7</td>
<td>22</td>
<td>96</td>
</tr>
</tbody>
</table>

Sunnybrook Dosimetry (19Gy)

D₀ (Gy)

Mean 21
Median 21.1
Minimum 18.9
Maximum 22.2
Increasing Dose to Dominant Lesion

- Failure occurs at site of initial bulk disease
- Can we improve results by dose escalating to site of dominant disease?
Dosimetry of Local Failures with 19 Gy Whole Gland

Average Dose-Volume histogram for recurrent nodule and prostate

\[D_{90_{nodule}} = 22.5 \text{ Gy (118\%)} \]

Mendez, Morton. Brachytherapy 2018
Monotherapy: HDR 19 Gy with Focal Boost

Dose escalation to GTV using MR/TRUS fusion
A Randomized Phase II Trial Evaluating High Dose Rate Brachytherapy and Low Dose Rate Brachytherapy as Monotherapy in Localized Prostate Cancer

Study Chairs: Eric Vigneault
Gerard Morton
Senior Investigator (SI): Wendy Parulekar
Senior Biostatistician: Keyue Ding
Study Coordinator (SC): Kate Whelan

Activated: Nov 2016
Accrual to March 2019: 100/232
PR.19 Schema

Eligibility criteria:
- Prostate carcinoma
- cT1-T2 and PSA < 20 and Gleason = 6
 - Or
- cT1-T2 and PSA < 15 and Gleason = 7 (3+4) and ≤ 50% of positive cores

<table>
<thead>
<tr>
<th>Randomize</th>
<th>Arm 1:</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDR brachytherapy with I-125 to a total dose of 144 Gy</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Randomize</th>
<th>Arm 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR brachytherapy: 19 Gy in 1 fraction with intraprostatic boost to GTV</td>
<td></td>
</tr>
</tbody>
</table>
PR.19 Treatment Arms

Arm 1: LDR 144 Gy

Arm 2: HDR 19 Gy + GTV boost to 28.5 Gy
Single Fraction with GTV Boosting

- 65 yr old with PSA 7.85
- Gleason 3+4 in 3/12 cores at right apex, 25% p4
- MRI: PIRAD 4 right apex

HDR 19 Gy + GTV Boost

Prostate V100: 97.6%
Prostate D90: 20.9 Gy

GTV D90: 30.5 Gy
Mean GTV: 45.3 Gy
PSA Profile

HDR
Feb
2016

7.85
3.8
3.1

5.8
4.8
5.2

10.6

01-Dec-15
01-Mar-16
01-Jun-16
01-Sep-16
01-Dec-16
01-Mar-17
01-Jun-17
01-Sep-17
01-Dec-17
01-Mar-18

PSMA PET

Persistent disease right apex
PSA Profile

HDR Feb 2016

PSMA PET

Biopsy:
G4+3 right apex 3/3 cores, 90% pattern 4
Systematic bx negative
PSA Profile

HDR Feb 2016

HDR 13.5 Gy x 2

#1

#2
PSA Profile

HDR Feb 2016

HDR 13.5 Gy x 2

HDR DCE HDR

7.85
3.38
3.1
5.8
4.8
5.2
10.6
7.14
2.81
1.8
1.2

01-Dec-15 01-Mar-16 01-Jun-16 01-Sep-16 01-Dec-16 01-Mar-17 01-Jun-17 01-Sep-17 01-Dec-17 01-Mar-18 01-Jun-18 01-Sep-18 01-Dec-18 01-Mar-19
Conclusions

• HDR Monotherapy in 2 or more fractions works really well
 – 13.5 Gy x 2, 11.5 Gy x 3, 9.5 Gy x 4
• 19 Gy x 1 may be associated with more late urinary symptoms and has unacceptably high local failure rate
• Not yet sure if single fraction with dose escalation to nodule will result in better outcome