Differences in dosimetry, treatment planning and equieffective dose
LDR vs HDR
monotherapy

Presented by
Professor Annette Haworth
Institute of Medical Physics,
School of Physics
These slides may not be reproduced without the author’s permission. Please contact Annette.Haworth@Sydney.edu.au
LDR vs HDR monotherapy

Both are safe and effective treatments in appropriately selected patients

So which treatment would you choose for yourself / relative?
What are we trying to achieve?

i.e. what is the comparator?

- Reduce the dose to OARs
 - Good for low risk disease
 - where Active Surveillance is now mostly indicated
- Dose escalation of the dominant lesion
 - Good for intermediate/ high risk disease
 - Where dose escalation has shown to benefit local control
- Improve the therapeutic ratio
 - i.e. maximise tumour control & minimise toxicity
- Maximise patient comfort/ convenience
- Cost?
So what do we know: LDR

- Long experience (> 20 years)
- 145 Gy (I-125) monotherapy
- US guided planning and treatment
- Post implant dosimetry day 0, 1 or 30
- AAPM, ESTRO & ABS guidelines
- Outcomes are great (FFbF typically > 90%)
What can go wrong?

But to be fair…. This sort of thing could happen with HDR too…
What can go wrong?

Seed displacement / migration

R Reed, et al *Brachytherapy* 2007
When is an LDR implant quality unacceptable?
The D90 debate

― Steep dose gradients at the periphery ... substantial uncertainty in D90 & V100 ... D90 & V100 capture no information on dose distribution"
Impact of selection of post-implant technique on dosimetry parameters for permanent prostate implants

Annette Haworth¹,²,* Martin Ebert³,⁴, Shaun St. Clair⁵, Brendan M. Carey⁵, Anthony Flynn⁵, David M. Bottomley⁵, Gillian M. Duchesne⁶, David Joseph¹, Daniel Ash⁵

D90

- Range as % of mean
- Ave variation is 19%
- (14% excluding patient #3)
Using MR and CT, does this help?

Contouring and image fusion are the ‘weak links’ in the procedure.
What TCP value predicts for treatment failure?

Combined TCP Zeng exponential cell density

High TCP_{comb}
FFbF 93.7%
(95% CI 90.4-96.4%)

Low TCP_{comb}
FFbF 88.8%
(95% CI 81.3-94.5%)

3 centres n=423
number of failures = 36

p=0.004
Can we make our plans robust to seed displacement?

A uniform margin of 0.5 cm was necessary to cover 95% of the delineated F-GTV for all patients.

Polders et al 2015

Apply a convolved dose rate model

OR

Compared pre- and post-planned positions, calc SD
Convolved dose rate model

Original dose rate function (R) and convolved dose rate function for $SD = 1, \ldots, 5\text{mm}$.

Summing uncertainties in quadrature

Table 4
Example 4 – LDR ^{125}I sources for permanent prostate BT.

<table>
<thead>
<tr>
<th>Category</th>
<th>Typical level (%)</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source strength</td>
<td>3</td>
<td>PSDL traceable calibrations</td>
</tr>
<tr>
<td>Treatment planning</td>
<td>4</td>
<td>Reference data with the appropriate bin width</td>
</tr>
<tr>
<td>Medium dosimetric corrections</td>
<td>5</td>
<td>No consideration is given for calcifications or their composition in the patient</td>
</tr>
<tr>
<td>Inter-seed attenuation</td>
<td>4</td>
<td>An advanced dose calculation formalism may indicate source models and orientations cause the largest effects</td>
</tr>
<tr>
<td>Treatment delivery imaging</td>
<td>2</td>
<td>US QA performed according to AAPM TG-128</td>
</tr>
<tr>
<td>Target contouring uncertainty</td>
<td>2</td>
<td>Using CT or CT + T2 imaging</td>
</tr>
<tr>
<td>Anatomy changes between dose delivery and post-implant imaging</td>
<td>7*</td>
<td>Post-implant imaging using CT, with a scalar correction factor for edema correction</td>
</tr>
<tr>
<td>Total dosimetric uncertainty ($k = 1$)</td>
<td>11</td>
<td>For treatment delivered without excreted seeds</td>
</tr>
</tbody>
</table>

* Estimated value based on expert discussion.
HDR?

- Long history when HDR is combined with EBRT (boost)
- Growing number of monotherapy studies
- Promising FFbF (too soon for OS, metastasis free survival etc?)
- Promising toxicity
HDR: what dose & what fractionation?

Table 3

Oncological results of high dose rate monotherapy for localised prostate cancer

<table>
<thead>
<tr>
<th>Reference</th>
<th>(n)</th>
<th>High dose rate protocol</th>
<th>Median follow-up (years)</th>
<th>Biochemical control*</th>
<th>BED (Gy)</th>
<th>EQD2 (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gy/fraction</td>
<td>Fractions (implants)</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[7]</td>
<td>190</td>
<td>6.0 Gy</td>
<td>8 (1 implant)</td>
<td>48.0 Gy</td>
<td>7.6</td>
<td>93% IR, 81% HR at 5 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.0 Gy</td>
<td>9 (1 implant)</td>
<td>54.0 Gy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.5 Gy</td>
<td>7 (1 implant)</td>
<td>45.5 Gy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[8]</td>
<td>448</td>
<td>7.0–7.25 Gy</td>
<td>6 (2 implants)</td>
<td>42–43.5 Gy</td>
<td>6.5</td>
<td>98.9% LR, 95.2% IR at 10 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.5 Gy</td>
<td>4 (1 implant)</td>
<td>38.0 Gy</td>
<td>4.1</td>
<td>98% LR, 95% IR at 5 years</td>
</tr>
<tr>
<td>[9]</td>
<td>494</td>
<td>12.0 Gy</td>
<td>2 (1–2 implants)</td>
<td>24.0 Gy</td>
<td></td>
<td>92% LR, 81% IR at 5 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.5 Gy</td>
<td>2 (1–2 implants)</td>
<td>27.0 Gy</td>
<td></td>
<td>100% LR, 79% IR at 5 years</td>
</tr>
<tr>
<td>[50]</td>
<td>60</td>
<td>19.0 Gy</td>
<td>1 (1 implant)</td>
<td>19.0 Gy</td>
<td>6.0</td>
<td>66% LR, 63% IR at 6 years</td>
</tr>
<tr>
<td>[32]</td>
<td>77</td>
<td>15.0 Gy</td>
<td>3 (3 implants)</td>
<td>45.0 Gy</td>
<td>4.7</td>
<td>96.7% all risk groups at 5 years</td>
</tr>
<tr>
<td>[34]</td>
<td>51</td>
<td>6.5 Gy</td>
<td>7 (1 implant)</td>
<td>45.5 Gy</td>
<td>1.4</td>
<td>94% all risk groups at 17 months</td>
</tr>
<tr>
<td>[5]</td>
<td>197</td>
<td>8.5–9.0 Gy</td>
<td>4 (1 implant)</td>
<td>34–36.0 Gy</td>
<td>3.1</td>
<td>95% IR, 87% HR at 4 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.5 Gy</td>
<td>3 (1 implant)</td>
<td>31.5 Gy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.0 Gy</td>
<td>2 (1 implant)</td>
<td>26.0 Gy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[53]</td>
<td>284</td>
<td>6.5 Gy</td>
<td>6 (2 implants)</td>
<td>39.0 Gy</td>
<td>2.7</td>
<td>94% IR at 5 years</td>
</tr>
<tr>
<td>[33]</td>
<td>718</td>
<td>9.5 Gy</td>
<td>4 (1 implant)</td>
<td>38.0 Gy</td>
<td>4.4</td>
<td>95% LR, 93% IR, 93% HR at 5 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.5 Gy</td>
<td>4 (2 implants)</td>
<td>38.0 Gy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.5 Gy</td>
<td>3 (3 implants)</td>
<td>34.5 Gy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[56]</td>
<td>79</td>
<td>10–11.5 Gy</td>
<td>3 (1 implant)</td>
<td>30–34.5 Gy</td>
<td>3.3</td>
<td>85.1% LR/IR at 5 years</td>
</tr>
<tr>
<td>[38]</td>
<td>298</td>
<td>7.0 Gy</td>
<td>6 (2 implants)</td>
<td>42.0 Gy</td>
<td>5.2</td>
<td>97% LR/IR at 5 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.5 Gy</td>
<td>4 (1 implant)</td>
<td>38.0 Gy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[55]</td>
<td>301</td>
<td>7.5 Gy</td>
<td>6 (2 implants)</td>
<td>45.0 Gy</td>
<td>8.0</td>
<td>88% all risk groups at 8 years</td>
</tr>
<tr>
<td>[57]</td>
<td>248</td>
<td>7.0 Gy</td>
<td>6 (2 implants)</td>
<td>42.0 Gy</td>
<td>4.8</td>
<td>87% LR/IR at 5 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.5 Gy</td>
<td>4 (1 implant)</td>
<td>38.0 Gy</td>
<td></td>
<td>91% LR at 5 years</td>
</tr>
<tr>
<td>[58]</td>
<td>36</td>
<td>9.5 Gy</td>
<td>4 (1 implant)</td>
<td>38.0 Gy</td>
<td>3.0</td>
<td>100% LR/IR at 3 years</td>
</tr>
<tr>
<td>[54]</td>
<td>65</td>
<td>9.5 Gy</td>
<td>4 (1 implant)</td>
<td>38.0 Gy</td>
<td>2.9</td>
<td>98% LR/IR at 3 years</td>
</tr>
</tbody>
</table>

LR, low-risk group; IR, intermediate-risk group; HR, high-risk group; BED, biologically effective dose considering an \(a/\beta \) ratio for prostate cancer of 1.5 Gy; EQD2, equieffective dose administered in 2.0 Gy fractions considering an \(a/\beta \) ratio for prostate cancer of 1.5 Gy.

* Biochemical failure defined by the Phoenix definition [59].
 HDR monotherapy

• > 2 or 3 fractions
 • Undesirable due to cost, convenience etc
• 1-2 fractions: highly desirable
 • But how many implants?
• 1 or 2?
Dose distribution: Which is best?

Urethral doses:

VMAT, IMPT, IMIT ~ 74Gy(IsoE)

LDR ~ 30Gy(IsoE) HDR ~ 10Gy(IsoE)

Georg IJROBP 2014
Dose distribution: Which is best?

Morton & Hoskin 2013

G.C. Morton, PJ. Hoskin / Clinical Oncology 25 (2013) 474-482
Dose distribution: Which is best?

What was actually delivered

What we assume was delivered

Probably ok in real-time US-guided HDR

Morton & Hoskin 2013
Use of deformable image registration software for MR + US: Promising results
Use of deformable image registration software for MR + US: Promising results

Table 1
Summary analysis results generated between STAPLE and each of ROs (average) and the three autogenerate DIL contours

<table>
<thead>
<tr>
<th>Structure</th>
<th>DIL</th>
<th>ROs</th>
<th>MR2US</th>
<th>Rigid</th>
<th>B-Spline</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSC</td>
<td>0.80 ± 0.10</td>
<td>0.80 ± 0.13</td>
<td>0.65 ± 0.20</td>
<td>0.51 ± 0.30</td>
<td></td>
</tr>
<tr>
<td>MDA (mm)</td>
<td>1.24 ± 0.73</td>
<td>1.30 ± 0.53</td>
<td>1.71 ± 0.80</td>
<td>3.10 ± 2.00</td>
<td></td>
</tr>
<tr>
<td>Distance between centroids (mm)</td>
<td>6 ± 2</td>
<td>5 ± 2</td>
<td>7 ± 3</td>
<td>18 ± 11</td>
<td></td>
</tr>
<tr>
<td>Registration time (sec)</td>
<td>227 ± 27</td>
<td>11 ± 2</td>
<td>7 ± 1</td>
<td>199 ± 38</td>
<td></td>
</tr>
<tr>
<td>Volume (cc)</td>
<td>3.52 ± 2.00</td>
<td>3.31 ± 2.00</td>
<td>2.83 ± 1.74</td>
<td>2.30 ± 1.64</td>
<td></td>
</tr>
<tr>
<td>Difference between volumes (cc)</td>
<td>0.86 ± 0.50</td>
<td>1.10 ± 0.50</td>
<td>1.50 ± 1.00</td>
<td>2.10 ± 1.20</td>
<td></td>
</tr>
</tbody>
</table>

ROs = radiation oncologists; DIL = dominant intraprostatic lesion; DSC = dice similarity coefficient; MDA = mean distance to agreement; STAPLE = simultaneous truth and performance level estimation.

^ Absolute difference between STAPLE and each of ROs, rigid, and deformable registration methods.
Use of real-time electromagnetic tracking for auto-catheter reconstruction

To achieve accurate and rapid catheter reconstruction during intra-operative procedures

Beaulieu, Brachytherapy 2018
Plan robustness: HDR

If the patient is transferred to CT or MRI for planning, needles can displace

Images courtesy R Smith, Alfred Hospital, Melbourne
Dose delivery verification methods: Integrated Source Tracking and Imaging

Slide courtesy R Smith, Alfred Hospital (Smith et al 2017)
Ir-192 HDR Source
Activity - 10 Ci

Magic Plate Imbedded in Couch

Slides courtesy of Anatoly Rosenfeld, CMRP, UOW Australia
Summing uncertainties in quadrature

Table 5
Example 5 – HDR 192Ir source for temporary prostate BT.

<table>
<thead>
<tr>
<th>Category</th>
<th>Typical level (%)</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source strength</td>
<td>2</td>
<td>PSDL traceable calibrations</td>
</tr>
<tr>
<td>Treatment planning</td>
<td>3</td>
<td>Reference data with the appropriate bin width</td>
</tr>
<tr>
<td>Medium dosimetric corrections</td>
<td>1</td>
<td>Full scatter conditions in the pelvic region and for the prostate location are assumed</td>
</tr>
<tr>
<td>US-based Treatment planning and delivery: Catheter reconstruction and</td>
<td>2</td>
<td>Assuming usage of dedicated catheter reconstruction tools (catheter free-</td>
</tr>
<tr>
<td>source positioning accuracy</td>
<td></td>
<td>length measurement based methods) for an accurate (0.7 mm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reconstruction of catheter tip and 1.0 mm source positioning accuracy by the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>afterloader for straight catheters and transfer tubes</td>
</tr>
<tr>
<td>US-based 2D and 3D-imaging overall effect</td>
<td>2</td>
<td>US QA performed according to AAPM TG-128 report</td>
</tr>
<tr>
<td>Changes of catheter geometry relative to anatomy between intraoperative</td>
<td>2</td>
<td>Assuming that new image acquisition and treatment plan calculation is done</td>
</tr>
<tr>
<td>treatment planning and intraoperative treatment delivery</td>
<td></td>
<td>always before each fraction. It is also required that no manipulation of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the implant and anatomy occurs, as it is the case when removing/manipulating</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the US-probe or moving the patient from the operation table before</td>
</tr>
<tr>
<td></td>
<td></td>
<td>treatment delivery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Using CT or CT + T2 imaging</td>
</tr>
<tr>
<td>Target contouring uncertainty</td>
<td>2</td>
<td>For treatment delivery without patient movement and changes in the</td>
</tr>
<tr>
<td>Total dosimetric uncertainty ($k = 1$)</td>
<td>5</td>
<td>lithotomic set-up and with the US probe at the position of the acquisition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(transversal plane at the prostate base)</td>
</tr>
</tbody>
</table>
Radiobiological Considerations

BED for LDR
- Depends on implant quality
- Typically >>100 Gy

<table>
<thead>
<tr>
<th>Reference</th>
<th>n</th>
<th>High dose rate protocol</th>
<th>Median follow-up (years)</th>
<th>Biochemical control</th>
<th>BED (Gy)</th>
<th>EQD2 (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gy/fraction</td>
<td>Fractions (implants)</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[7]</td>
<td>190</td>
<td>6.0 Gy</td>
<td>8 (1 implant)</td>
<td>48.0 Gy</td>
<td>7.6</td>
<td>93% IR, 81% HR at 5 years</td>
</tr>
<tr>
<td>[8]</td>
<td>448</td>
<td>7.0–7.25 Gy</td>
<td>6 (2 implants)</td>
<td>42–43.5 Gy</td>
<td>6.5</td>
<td>98.9% LR, 95.2% IR at 10 years</td>
</tr>
<tr>
<td>[9]</td>
<td>494</td>
<td>9.5 Gy</td>
<td>4 (1 implant)</td>
<td>38.0 Gy</td>
<td>4.1</td>
<td>98% LR, 95% IR at 5 years</td>
</tr>
<tr>
<td>[50]</td>
<td>60</td>
<td>19.0 Gy</td>
<td>1 (1 implant)</td>
<td>19.0 Gy</td>
<td>6.0</td>
<td>66% LR, 63% IR at 6 years</td>
</tr>
<tr>
<td>[32]</td>
<td>77</td>
<td>15.0 Gy</td>
<td>3 (3 implants)</td>
<td>45.0 Gy</td>
<td>4.7</td>
<td>96.7% all risk groups at 5 years</td>
</tr>
<tr>
<td>[34]</td>
<td>51</td>
<td>6.5 Gy</td>
<td>7 (1 implant)</td>
<td>45.5 Gy</td>
<td>3.1</td>
<td>95% LR, 87% HR at 4 years</td>
</tr>
<tr>
<td>[5]</td>
<td>197</td>
<td>8.5–9.0 Gy</td>
<td>4 (1 implant)</td>
<td>34–36.0 Gy</td>
<td>3.1</td>
<td>95% IR, 87% HR at 4 years</td>
</tr>
<tr>
<td>[33]</td>
<td>284</td>
<td>6.5 Gy</td>
<td>6 (2 implants)</td>
<td>39.0 Gy</td>
<td>2.7</td>
<td>94% IR at 5 years</td>
</tr>
<tr>
<td>[38]</td>
<td>718</td>
<td>9.5 Gy</td>
<td>4 (1 implant)</td>
<td>38.0 Gy</td>
<td>4.4</td>
<td>95% LR, 93% IR, 93% HR at 5 years</td>
</tr>
<tr>
<td>[35]</td>
<td>43</td>
<td>9.5 Gy</td>
<td>2 (1 implant)</td>
<td>26.0 Gy</td>
<td>2.7</td>
<td>94% IR at 5 years</td>
</tr>
<tr>
<td>[56]</td>
<td>79</td>
<td>10–11.5 Gy</td>
<td>3 (1 implant)</td>
<td>30–34.5 Gy</td>
<td>3.3</td>
<td>85.1% LR/IR at 5 years</td>
</tr>
<tr>
<td>[38]</td>
<td>298</td>
<td>7.0 Gy</td>
<td>6 (2 implants)</td>
<td>42.0 Gy</td>
<td>5.2</td>
<td>97% LR/IR at 5 years</td>
</tr>
<tr>
<td>[55]</td>
<td>301</td>
<td>7.5 Gy</td>
<td>6 (2 implants)</td>
<td>45.0 Gy</td>
<td>8.0</td>
<td>88% all risk groups at 8 years</td>
</tr>
<tr>
<td>[57]</td>
<td>248</td>
<td>7.0 Gy</td>
<td>6 (2 implants)</td>
<td>42.0 Gy</td>
<td>4.8</td>
<td>87% LR/IR at 5 years</td>
</tr>
<tr>
<td>[58]</td>
<td>36</td>
<td>9.5 Gy</td>
<td>4 (1 implant)</td>
<td>38.0 Gy</td>
<td>3.0</td>
<td>100% LR/IR at 3 years</td>
</tr>
<tr>
<td>[54]</td>
<td>65</td>
<td>9.5 Gy</td>
<td>4 (1 implant)</td>
<td>38.0 Gy</td>
<td>2.9</td>
<td>98% LR at 3 years</td>
</tr>
</tbody>
</table>

LR, low-risk group; IR, intermediate-risk group; HR, high-risk group; BED, biologically effective dose considering an α/β ratio for prostate cancer of 1.5 Gy; EQD2, equivalent dose administered in 2.0 Gy fractions considering an α/β ratio for prostate cancer of 1.5 Gy.

* Biochemical failure defined by the Phoenix definition [59].
Radiobiological Considerations

• α/β clear favours HDR
• Radiobiology uncertainties at high dose/fraction
• Single fraction HDR:
 • ? Re-oxygenation
 • ? Redistribution
So potentially HDR (1 or 2 fractions) *may* be better than LDR?

- Plan robustness
- Dose to the urethra
- Radiobiological considerations
But what about the elephant in the room?

TOXICITY????
Toxicity

• Urinary toxicity:
 • LDR: Almost all patients experience irritative symptoms for up to 12 months
 • Martinez 2010:

<table>
<thead>
<tr>
<th></th>
<th>HDR*</th>
<th>LDR (Pd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Dysuria</td>
<td>39%</td>
<td>60%</td>
</tr>
<tr>
<td>Frequency/urgency</td>
<td>58%</td>
<td>90%</td>
</tr>
<tr>
<td>etc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Morton et al 2017: 2 vs 1 fraction HDR monotherapy
 • 51% acute Gd 2 GU in first 3 months, falling to 31%

*38 Gy in 4, or 42 Gy in 6 fractions
But, bad things can happen....

Urethral strictures following high-dose-rate brachytherapy for prostate cancer: Analysis of risk factors

Benjamin R. Hindson1,2,*, Jeremy L. Millar1,3, Bronwyn Matheson1,2

1William Buckland Radiation Oncology, Alfred Health, Melbourne, Victoria, Australia
2Department of Surgery, Monash University, Melbourne, Victoria, Australia
3Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Victoria, Australia

CONCLUSIONS: In our patients, those who received 19 Gy/2 were at a significantly higher risk of stricture formation. Most of these strictures were mild, requiring only one intervention but a 2-year stricture risk of 31.6\% was striking, and we have modified our protocol. © 2013 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

See also Barkati et al 2012
Future Work

• Dose to the urethra is an important consideration
 • Focal or boost focal approaches (LDR or HDR) should be considered (dose painting by numbers approach)
 • Use of MR is encouraged, but understand registration uncertainties

• HDR (1-2 fractions)
 • Pre-treatment verification / in vivo dosimetry urgently needed
 • Knowing what dose was delivered:
 • Better understanding of dose – response relationship (target & OAR)
 • Better modelling of radiobiology parameters at high dose/ fraction
Conclusions

• **LDR monotherapy:**

 • Convenient for the patient
 • There are ways to deal with random seed displacement
 • Long term results: we know what to expect
 • Patient selection is critical

• **HDR monotherapy**

 • 1 or 2 fraction schedules may offer similar convenience
 • Careful planning and pre-treatment verification essential
 • Radiobiological advantages

• **Clinical trials are needed**

 • Confirm results are translatable to other centres
 • Better understanding of radiobiology high dose/ fraction